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Semiclassical energy quantization of anharmonic potential 
motion+omplex trajectory contributions versus 
higher-order corrections 
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7 Department of Mechanics, Royal Institute of Technology, S-10044 Stmkholm, Sweden 
$Department of Theoretical Physics, University of Uppsala, Box 803, S-75108 Uppsala, 
Sweden 

Received 14 January 1994 

Abstract In the present investigation we assess the relevance of both classically forbidden 
phenomena and higher-order asymptotic contributions for the semiclassical energy quanti- 
zation o f  a particle in the anharmonic oscillator potential V ( x ) = x z / 2 + k 4 .  W e  propose 
an iterative method (14) for obtaining higher-order semiclassical corrections, which is similar 
to the WKB and phase-integral methods in the lowest order, but in higher orders the appmxi- 
mation differs significantly. A ‘primitive’ Bohr-Sommerfeld energy quantization is com- 
pared with a more complete semiclassical quantization, taking into account both complex 
trajectory contributions and higher-order (quantal) corrections. 

1. Introduction 

A successful semiclassical quantization method for nonlinear classical systems has to 
reflect mechanisms of nonlinear classical phenomena as well as classically forbidden 
phenomena. This is evident from semiclassical research over the last couple of decades. 
It is also clear that semiclassical quantization methods are parts of asymptotic solutions 
of a singular perturbation problem. In the present investigation we assess the relevance 
of both classically forbidden phenomena and higher-order asymptotic contributions for 
the semiclassical energy quantization of a particle in the anharmonic oscillator potential 

A problem of some concern for nonlinear classical systems is that primitive semi- 
classical methods (leading to quantization conditions equivalent to a leading-order 
Bohr-Sommerfeld one) cannot predict the individual energy levels in the sense that the 
ratio of the average absolute error of the semiclassical eigenvalues and the local mean 
level spacing may increase indefinitely in some cases; see [I]. The present investigation 
may give quantitative estimates of contributions left out by such primitive semiclassical 
methods. 

Recent research on higher-order contributions [2] suggests that numerous ways of 
obtaining them remain to be explored. The present authors have undertaken a thorough 
theoretical and numerical investigation of various new iterative methods that will be 
presented elsewhere. One iterative method is presented in [2], and in this article we 
briefly outline how another iterative method can be developed. 
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V ( x )  = 2 / 2  f ?a4. 
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The underlying second-order ordinary differential (time-independent Schrodinger) 
equation is of the general form 

y“ + R (2) y =a 
where the assumed slowly varying coefficient R(z)  is an analytic function of tlie variable 
z. The derivative y” represents the second-order derivative with respect to z.  Equation 
(1.1) is quite general, since all homogeneous second-order ordinary differential 
equations can be reduced to that form. Numerous applications of (1.1) can be found 
in quantum and classical mechanics, and several methods have been developed to solve 
it. In the present paper we propose an iterative method which is similar to the WKB 
and phase-integral methods [3-51 in the lowest order of approximation, but the higher- 
order approximations contain important differences. 

In section 2 we derive the so-called q-equation, equivalent to the Schrodinger equa- 
tion (l.l), by an amplitude-phase decomposition of the wavefunction. Section 2 also 
introduces the iterative solutions of the q-equation in terms of an unspecified base 
function and a sequence of correction factors corresponding to the contributions from 
each order of iteration. The first two correction factors are expressed in terms of higher- 
order phase-integral quantities. The q-iteration method is used in section 3 to determine 
some low-lying energy levels of the reduced anharmonic oscillator potential V(x)  = 
2/2+Lx4, with 1=0.1,1 and 1000. The importance of complex classical turning points 
and higher-order corrections in the quantization condition is discussed by comparing 
the ‘primitive’ (real classical motion and no higher-order contributions) quantization 
results with more general higher-order semiclassical quantization results and with 
numerical quantum ones. Conclusions are in section 4. 

2. Higher-order contributions 

In this section we propose an iterative asymptotic approximation method which is 
similar to the phase-integral (or symmetric WKB) method for solving second-order 
ordinary differential equations; see [ 5 ] .  In their lowest order of approximation the 
phase-integral method and its iterative version are identical. Most aspects of the connec- 
tion problem relating the linear combinations of the fundamental approximants across 
isolated transition regions of simple (complex) classical turning points can be taken 
over from the so-called F-matrix method. Some limitations of applying the iterative 
approximation in combination with already existing, approximate phase-integral 
formulae are pointed out at the end of the sections. A more detailed theoretical outline 
using formal expansion parameters, and giving a critical justification of the iterative 
technique used in section 2.2, is given in a paper by Dammert and Thylwe [6]. 

2. I. Phase-integral q-equation 

The iteration procedure is based on a non-linear equation for the exact frequency (or 
wavenumber) function q of the solutions. This function is defined and its equation, the 
q-equation, is derived below. 

The starting point is a phase-amplitude decomposition of the solution to (1.1). This 
idea is easy to adopt for regions of z-values where the solutions are oscillatory, and can 
then be generalized to other regions by analytic continuation. Hence, two fundamental 
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solutions of (1.1) are now constructed in the form 

y*=A(z )  exp f i  q(z’) dz‘ ( l  1 
where A(z)  and q(z)  are still to be determined. Once they have been determined, the 
general solution of (1.1) can be expressed as a linear combination of y’ and y-. In 
order for the Wronskian of the two independent solutions (2.1) to be a constant W, 
we find 

~ = y + y ‘ - -  y-y’+= -2iA2(z)q(z). (2.2) 

From (2.2) follows that A(z)  is determined by q(z) and we can equally well define our 
fundamental solutions in the more specific form 

yt=q-1/2(z) exp(-ti [ q ( z ’ )  dz’). (2.3) 

By inserting (2.3) into the differential equation (1.1) we obtain a nonlinear equation 
for q(z), the q-equation 

2 

(2.4) 
d -  R (z)  - d(z) +q’/’(z) ~4 ’/2(~)=0. 

In the (symmetrical) phase-integral approximation one now expands (in a certain 
way) the function q(z) as a power series in a formal expansion parameter and equates 
in (2.4) the terms of each order. The resulting sequence of equations can then be solved 
successively. This technique, which is reviewed in [2] (section 2), corresponds to an 
outer expansion in the language of boundary layer theory, and it is thereby assumed 
that the function R(z )  is not too small. The boundary layers represent the regions of 
the complex-z plane near the zeros, or transition points, of R ( z ) .  Here we shall proceed 
differently by solving (2.4) using a direct iterative technique. 

2.2. Iterative solution 

First we introduce a so-called base function Q(z ) ,  which is approximately equal to 
R’/’(z) except, possibly, at certain points in the complex-z plane. By inserting q=Qg 
in (2.4) above and dividing by Q 2  one obtains (see also [2]) 

where 

and 

d t =  Q dz. (2.7) 

The nonlinear equation (2.5) for g is exact. To the lowest order of approximation for 
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g we take 
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Go=+l.  (2.8) 

By neglecting only the last term in the right member of (2.5), we find the first-order 
approximate solution GI in terms of the unspecified base function: 

GI = f JW. (2.9) 

To continue the iterative procedure we subsequently introduce the improved base func- 
tion Ql= QGl, which we use to insert a new q=Qlg into the q-equation (2.4) and 
dividing it by Q:. The resulting equation for the new multiplicative correction function 
g is 

(2.10) 

with 

dCr=Qidz (2.11) 

in complete analogy to (2.5). The second correction factor is, in the same spirit as 
before, given as 

G 2 = f J m  (2.12) 

and so on. Obviously, after N iterations one finds the following approximate result: 

GN=& JI+&(Q,v-i) (2.13) 

so that the Nth-order iteration expression for q becomes 

q=Q,v=QoGiG2. . . GN (2.14) 

f QoJ[(l+ dQ0))(l +&(&I)) . . . (1 + WN- J ) J .  
The expression for &(e.), in the (n+ 1)th iteration step, is obtained in analogy to (2.6). 
Using equation (6) in [2], one finds 

(2.15) 

Equation (2.15) can be used to calculate &(a) only for n b l .  &(eo) ( = & ( e ) )  is 
calculated separately from (2.6). In (2.15), we have used the notation dC.=Q. dz with 
dCo = Qo dz, as a special case. 

2.3. Relation to phase-infegrai quantities 

We now wish to express the iterative correction factors of section 2.2 in terms of the 
phase integral quantities E., given by 

(2.16) 
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with 

CO= &(e). 
This correspondence is more of computational importance, since some elaborated 
routines for the phase-integral quantities E. already exist. To begin with, we already 
consider Gj to be explicitly expressed in terms of the phase-integral quantity so, i.e. 

GI=*- (2.17) 

To proceed one more step, from (2.12) we see that G2 is related to &(el), but &(Ql), 
in turn, is related to GI according to (2.15), i.e. 

E ( Q I ) = G ~ ~ " - G I  d2 -1/2 . 
dC2 

(2.18) 

Performing the differentiation in (2.18) together with (2.17), we find 

&(el) = &(I + &0)-~[5&-4( 1 + &0)&2].  (2.19) 

Now the expression for G2 is clear for the computational purposes of the present 
investigation. 

2.4. On F-matrix theory 

The F-matrix theory for Stokes's constants and connection formulae described in the 
book by Froman and Froman can be taken over directly. For example, connections 
across isolated turning points, with rigorous error bounds, can be found. It is important 
to emphasize, however, that existing uniform, comparison-equation techniques in higher 
approximations cannot be used in its present form. Such uniform methods are important 
in, for example, barrier penetration problems close to the top of the potential barrier. 

In the application to energy quantization in the quartic oscillator potential of the 
next section, the positions of real and complex classical turning points, as well as the 
patterns of Stokes's and anti-Stokes's lines, are similar to those of a double-well prob- 
lem. As long as the energy is far above the top of the local barrier in a double-well 
problem there is only a slight perturbation in the analytic behaviour of the wavefunc- 
tions if the barrier is inverted. Semiclassically, this means that one does not encounter 
the case where the barrier turning points coalesce. Hence, no comparison equation 
technique is necessary and the F-matrix method in [4] (see chapter 6 )  applies. 

3. Energy quantization in an anharmonic potential 

This particular application is, from a technical point of view, considered as an extrapola- 
tion of a double-well oscillator problem for energies far above the little barrier in the 
middle of a symmetric well. The anharmonic potential, which has no barrier, is given 
the reduced form 

V ( Z )  = 42 + az4 h 0 .  (3.1) 

- t w." + V(z)y.= E.W". (3.2) 

The Schrodinger equation in reduced units ( l i=  1 and m =  1) can be written as 
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The coefficient R ( z )  introduced in (1.1) is thus given by 

R (2) = 2 ~ -  2- 2az4. (3.3) 

We use as the so-called base function Q(z)=R”’(z) ,  with real and imaginary classical 
turning points 

and 

(3.5) 

The primitive semiclassical quantization condition, without higher-order corrections 
and contributions from complex turning points, is in this case the Bohr-Sommerfeld 
formula 

_ +  -I  1:; Q@)dz=(n+$l i .  (3.6) 

where the integration is performed along the real axis (see figure 1) between the two 
real tuming points. 

Figure 1. Illustration of complex contours of integration used in the quantization condition 
(3.7). In leading-order calculations the contours can be replaced by straight lines connecting 
the relevant turning points, 

To incorporate the two complex tuming points in the present problem, we argue 
that it is a valid procedure to use a symmetric double-well quantization condition with 
neglection of correction phases typically present for energies close to the top of the 
barrier, which does not exist here. Hence, from [7], assuming the correction phase is 
zero, we get the quantization formula 

(3.7) 



Semiclassical energy quaniizaiion 4017 

where 

K = z  qdz<O (3.8) ’ f r z  

is the action corresponding to a classically forbidden trajectory with the same energy. 
The contours of integration, circumventing the real and complex turning points, are 
illustrated in figure I .  

In the numerical computations we consider only low-lying energy levels since the 
semiclassical results are less accurate for them. We have chosen the states n = O ,  4 and 
8 to illustrate the rapid progess of the semiclassical accuracy. In table I ,  one column 
shows the energy levels obtained by the ‘primitive’ Bohr-~Sommerfeld condition (3.6), 
another shows energy levels from the iterated-q version (iq version) of the semiclassical 
condition (3.7) for the three leading iteration orders. For the ground state, the second- 
order 1q approximation occasionally failed to satisfy the quantization condition within 
20 Newton-Raphson iterations to the desired accuracy of IO-”. Therefore this order 
of rq approximation is systematically left out for the ground state. Zeroth-order iq 
results are compared separately with the ‘primitive’ Bohr-Sommerfeld results to under- 
stand the importance of including complex trajectories without implementing higher- 
order contributions, A third column in table 1 contains energy levels obtained by higher- 
order standard phase-integral approximations (see [ 2 ] ,  equations (14a)-(14e) and (17)) 
using the condition (3.7). With this column it is possible to judge the efficiency of the iq 
approximation to incorporate higher-order contributions. For completeness, numerical 
quantum results, reported by Hioe and Montroll [SI and occasionally corrected by the 
present authors, are included in the table. 

The ground state n=O is generally the most difficult one to approximate semiclass- 
ically. However, for the exceptional case A.=O the ground state and all other levels 
are exactly obtained by the ‘primitive’ Bohr Sommerfeld formula. The quantization 
condition (3.7) also reduces to a Bohr-Sommerfeld formula and higher-order correc- 
tions vanish. As A is increased only slightly, say up to A=O. I ,  semiclassical approxima- 
tions, with and without complex-trajectory contributions, are accurate to within 7%. 
With higher-order corrections the errors become smaller by at least an order of magni- 
tude. For weak anharmonicity, the influence of complex trajectories is thus much less 
important than higher-order contributions. 

Already for A =  1 the turning points of the complex trajectories come closer to real 
values, and a modification in the quantization conditions shows a significant improve- 
ment, of the same order of magnitude as the higher-order corrections. The ground- 
state relative error, corresponding to the ‘primitive’ Bohr-Sommerfeld formula, is 
approximately 12%, but only 6% if the complex trajectory contributions are included 
in the quantization formula. Again, with a first correction of higher order the relative 
error decreases well below 1%. 

The importance of complex trajectories is more pronounced for large values of A, 
like A= 1000 in table I .  The ‘primitive’ semiclassical quantization yields a relative error 
in the ground state of approximately 18%. If complex trajectories are taken into account, 
the relative error stays around 6%. Further improvements are accounted for by higher- 
order corrections in the quantization formula. The situation for the ground-state 
accuracy is not expected to change significantly if 1 is increased towards infinity. The 
best result we can get for the ground state n = O  of an almost quartic oscillator is a 
relative error of about 1%. In all cases we have analysed, the errors of neglecting 
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Table 1. The table shows the energy levels from the 'primitive' Bohr-Sommerfeld (PES) 

quantization using (3.6). and from thc iterated-q (14) and phase-integral approximations 
(PTA) using quantization condition (3.7). The anharmonic oscillator potential is V ( r ) =  
:r*+L'. f i =  I, ni=  I .  Numerical quantum results are also included for comparison. 

Level Iteration E'" Order E''" 

A = O . I  

0 0.534 I 0.534 0.533 
0 I 0.559 380 3 0.558 198 

2 5 0.559 324 
7 0.559468 
9 0.559444 

I 1  0.558 989 

Numerical 0.559 146 

0 6.212 I 6.212 6.212 
4 I 6.220301 418 3 6.220 302 455 

2 6.220 300 898 5 6.220 301 466 
7 6.220 300 916 
9 6.220 300 898 638 
II 6.220 300 899 682 

Numerical 6.220 301 

0 13.377 I 13.377 
8 I 13.382 474 847 3 13.382476 

2 I338247480743  5 13.382 474 851 
7 13.382474 807 593 
9 13.382474807427 
II 13.382474807444 

Numerical 13.382 475 

13.377 

A = I  .~ 

0 0.750 1 0.750 0.704 
0 I 0.806 753 3 0.811 

2 - 5 0.806 896 
7 0.785 
9 0.720 

11 0.920 

Numerical 0.803 771 

0 10.946 I 10.946 10.946 

2 10.963 583 073 91 5 10.963 585 540 
1 10.963 582 972 
9 10.963 583 069 258 

I 1  10.963 583 096 750 

4 I 10.963 585 3 10.963 634 

Numerical 10.963 583 

0 24.983 I 24.983 24.983 

2 24.994 936 409 40 5 24.994 936 542 
8 I 24.994 936 527 3 24.994 946 

7 24.994 936 407 385 
9 24.994 936 409 382 

I 1  24.994 936 409 504 

Numerical 24.994 936 
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Table 1. (continued) 

Level Iteration Elq Order E"" EPB* 

a-iooo 
0 6.293 I 6.293~ 5.480 

2 - 5 6.647 542 
0 1 6.631 658 3 6.800 

7 6.312 
9 7.530 

- I I  8.959 

Numerical 6.694221 

0 102.338 1 102.338 102.338 

2 
4 I 102.516 177 3 102.516 859 

102.516 I5694260 5 102.516 179 
7 102.516 154.554 
9 102.516 156 889 

I I  102.516 157 216 

Numerical 102.516 157 

0 238.895 1 238.895 238.895 

2 239.01 I 577 549 52 5 239.01 1 578 826 
8 I 239.011 578 681 3 239.01 1 704 

7 239,011577 515 
9 239.011 577 549 301 

I I  239.011 577 550633 

Numerical 239.01 1 578 

complex trajectories and higher corrections add together, yielding a too low ground- 
state energy. 

The estimated absolute ground-state error divided by the local level spacing (pre- 
dictability error) for each approximation is presented in table 2. Note that the leading- 
order semiclassical (rq and phase-integral approximations) results, containing complex- 
trajectory contributions, have been given a separate column (CWKB) in the table. 

When we turn to higher quantum numbers the influence of complex trajectories 
rapidly becomes insignificant. However, the higher-order corrections become more 
consistent and lead to extremefy accurate results for the energy levels. The rq approxima- 
tion is very effective already with the first-order iteration formula. 

Table 2. Predictability errors for the ground-state level, i.e. I(€;- EP")/(E;""- Er'")[,  
for three cases of the anharmonidy parameter 1., with a indicating the type of approxima- 
tion: PBS ('primitive' Bohr-Sommerfeld). CWKR (first-order complex WKB), rq optimal 
result, and PIA (phase-integral approximation) optimal result. 

a PBS CWKB 1q PIA 

0.1 0.02 0.02 2e-4 2-4 
1 0.05 0.03 Ze-3 3e-3 

1000 0.07 0.02 4e-3 3e-3 
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4. Conclusions 

For separable dynamical quantum systems which reduce to one-dimensional, uncoupled 
quantizations, there is a fair understanding of the asymptotics of semiclassical approxi- 
mations and the singular classical limit that we would like to influence our work on 
more general systems. The details of real and complex classical turning points and other 
transition points like potential poles of various orders turn out to be of importance for 
the accuracy. In this paper we demonstrate that if one is interested in details of low- 
lying quantum levels near the classical limit, one has  to be prepared to include not only 
complex turning points, but also higher-order terms in the semiclassical quantization 
conditions. Typically, a ‘primitive’ Bohr-Sommerfeld quantization yields gradually 
more accurate energy levels as the quantum number increases. However, one can predict 
cases where complex turning points become important at quite high quantum numbers 
(multi-well potentials), or else real, physical boundary points for the wavefunction may 
come too close to the important turning points in the quantization [I]. 

We also like to point out that higher-order semiclassical contributions can be 
efficiently included by the iterative method presented in this paper. Formal aspects and 
questions concerning optimal orders (relevant for asymptotic expansions) of this and 
similar iteration methods will be published separately 161. 
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